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Abstract-Our objective is to provide a collection of 
automated tools and techniques for reducing operational and 
maintenance costs in space planes. To demonstrate our 
capability,  we  used the AFE of JPL which will  be flown on 
the X-33 as  the testbed to examine our techniques. This 
paper discusses the tools that were used to develop that 
software. Another paper is in preparation to discuss the 
artificial intelligence being flown on the AFE. 

One of the technology demonstrations on the AFE was to 
show  how artificial intelligence could be used for reducing 
operational and maintenance costs.  For  this we used two 
JPL developed tools: Tspec and SHINE. Tspec was used 
for the automated testing and verification of portions of the 
AFE’s software. SHINE was used as  a high-speed inference 
engine  for monitoring, analysis and diagnosis of portions of 
the AFE hardware. Faults are detected and diagnosed in 
flight  with their resolutions logged by the X-33’s. 

This paper provides an overview of SHINE. A description 
of Tspec can be found from the references. 
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2. BACKGROUND 

Researchers in Artificial Intelligence (AI) of knowledge- 
based systems applications have faced a severe lack of 
sophisticated software tools running on  flight hardware to 
assist them in developing AI approaches aimed at reducing 
operational and maintenance costs in space planes. 

Much of the available commercial and “home-grown’’ 
software suffers from one or more severe limitations. The 
effect has been either to hamper the artificial intelligence 
programming techniques that could be used effectively in an 
application or to cause AI programmers to redevelop their 
own software tools to  be used on flight hardware [2]. These 
limitations have historically included such problems as 
documentation, poor access to facilities at different levels, 
lack of modularity, poor run-time efficiency, inadequate 
debugging facilities and access to source code and lack of 
tools to support the most advanced reasoning techniques. 

3. OBJECTIVE 

Our objective is to provide a collection of automated tools 
and techniques for reducing operational and maintenance 
costs in space planes. To demonstrate our capability, we 
used the Avionics Flight Experiment (AFE) of Jet 
Propulsion Laboratory (JPL) which will  be  flown on the X- 
33 as the testbed to examine our techniques. 

The X-33 is a  joint program between NASA  and Lockheed. 
They have partnered to produce the X-33 test vehicle to 

demonstrate advanced technologies that will dramatically 
increase reliability and lower the cost of putting  a  pound of 
payload into space from $10,000 to $1,000. The X-33 
program will demonstrate in  flight the new technologies 
needed for a Reusable Launch Vehicle (RLV). 

We used two JPL-developed tools as examples of how AI 
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can be used for reducing operational and maintenance costs 
and we used the AFE as our testbed for testing out our 
ideas. 

The Test Specification Language (Tspec)[ I] was used for the 
automated testing and verification of portions of the AFE’s 
software and hardware. Spacecraft Health Inference Engine 
(SHINE)[7]  was used for monitoring, analysis and diagnosis 
of portions of the AFE hardware. Both these tools were 
used  on the AFE during system Integration and Test (I&T) 
and while in flight. Faults are detected and diagnosed in 
flight with their resolutions logged by the Vehicle Health 
Manager  (VHM) of the X-33 through the 1773 system bus. 

4. AVIONICS FLIGHT EXPERIMENT AS A TESTBED 

The AFE of JPL is being flown as part of the X-33 as a 
testbed to demonstrate new hardware and software for 
reducing the cost of space planes. Because the AFE was 
designed and  built by JPL,  this provided us many 
opportunities  to influence the hardware design and 
capabilities of the  end  system. This means that the AFE 
provided us with a very rich environment for testing out our 
ideas. 

The hardware of the AFE is composed of a PPC 603ev 
processor clocked at 200 MHz, 5 I2KB of level 2 cache, 196 
MB of RAM, 220 MB of non-volatile memory, six 
redundant 1553 flight buses, one 1773 optical bus, an 
avionics package including of a Geo Positioning System 
(GPS), accelerometers, gyro data, A to D converters and 
timers. 

The software was composed of the following major 
modules: 

1. Boot  System  Software 
The bootstrap component provides three 
capabilities: nominal booting, off-nominal booting 
and  internal visibility. 

2. Boot  System  Software 
The bootstrap component provides three 
capabilities: nominal booting, off-nominal 
booting,  and internal visibility. 

3. 1553  Device  Driver 
Interfaces to the six redundant 1553 buses to 
provide an unidirectional data flow of all X-33 
1553 bus traffic to the AFE. 

4. 1553 Bus Data  Parser 
A programmable facility which can  be dynamically 
configured to extract specific measurements from 
1553 bus traffic, convert them to the specified 
units and  send them as individual measurements to 
the Data Routing Task for distribution. 

5. 1553  Resource  Manager 
Interfaces to the 1553 device driver to provide a 
unidirectional data flow of 1553 bus data from the 

1553 hardware to the resource manager. 

6. Data Routing  Task 
Responsible for receiving data from the 1553 and 
the sensor assembly and sending it to the various 
AFE tasks via the IPC facility. It also provides an 
interface to supply the Avionics Health Manager 
with selected real-time 1553 data using a 
unidirectional pipe from the Data Router to  the 
Avionics Health Manager. 

7.  1773  Device  Driver 
Interfaces with the ASCENT AS-1773 Bus 
Controller chip. The AFE acts as the bus 
controller on the 1773 bus,  and the X-33 VHM 
subsystem is the only Remote Terminal on that 
bus. The DD1773 encapsulates the hardware 
details of the ASCENT chip, and provides a 
simple ReadiWrite interface to the VTM task. 

8. Sensor  Assembly  Driver 
The hardware driver interface to the AFE’s Sensor 
Assembly Module. This is the software interface 
to the GPS and accelerometers. 

9. Sensor  Assembly  Resource  Manager 
Interfaces to the Sensor Assemble Driver to acquire 
real-time sensor assembly data, convert the data 
into engineering units and  send it to the Data 
Routing  Task. 

10. Non-Volatile  Memory  Manager 
A silicon hard  disk that is used to contain the AFE 
software and store the configuration information for 
each flight. 

11.  VHM Transaction  Manager 
Provides a bi-directional interface to the 1773 
optional bus of the X-33. This bus is used to 
record the results from AFE on the X-33 for later 
processing by ground operations. 

12. Enhanced  State  Estimator 
The AFE has an internal Sensor Assembly Board 
containing a micro-gyro (planned), micro- 
accelerometers, and  GPS devices. The ESE task 
receives input data from the Sensor Assembly 
Manager task, which handles the sampling of the 
AFE sensors and coverts the raw data to 
engineering units (for the gyros and 
accelerometers). 

13. Watchdog  Timer 
Provides the basic capability of having the AFE 
Software automatically reboot itself if the 
watchdog task stops working or the CPU halts. 

A diagram of the relationship between the avionics health 
manager relative to the AFE software can be seen in figure 
1. 



5. DISCUSSION OF TSPEC 

Tspec[l] is a behavior specification language, a compiler, 
and a library of support software that together enable users 
to specify expected behaviors, compile those into auditor 
modules that are included within a  C/C++ system under 
test,  and  get notifications when behavioral expectations are 
violated. These embedded behavior auditors analyze the 
[lengthy] observed behavior in real time to verify if the 
application logic is respecting all constraints. 

Given appropriate specifications, the Tspec auditor can 
detect a variety of misbehaviors. These include: 

14. Detecting invalid values (e.g., Transmitter A 
voltage should never exceed 40 volts); 

15. Liveness violations (e.g., Missing heartbeat 
from state estimator); 

16. Resource violations (e.g., Task A  on CPU 
B is consuming too many resources); 

17. Missing values (e.g.,  Missing update from 
gyro); 

18. Illegal state transitions (e.g., Subsystem A 
goes from “Off” to “Off’ without an 
intervening “On”); 

19. Duration violations (e.& Battery heater that 
stays on longer than is expected); 

20. Invariant violations (e.g., Taking a sensor 
reading when the cover is closed); 

21. Out-of-sequence events (e.g., turning on an 
exciter before turning on  its power 
amplifier). 

Testing with Tspec is centered on declarative specifications 
of acceptable behavior, in the form of invariants, state 
machines, episodes, and constraints. Behavior encompasses 
values of observed measurements, update frequencies, event 
sequences, interval durations, repetition rates, and flight 
rules. Compared to  methods that check for specific forms 
of misbehaviors, this approach is easier because  users 
specify a relatively small number of correctiexpected 
behaviors rather than a huge variety of misbehaviors, and 
more robust because it flags behaviors that deviate from the 
specifications. 

Specifications of expectedacceptable behavior are  expressed 
in  this higher level user-oriented language and compiled 
into  a lower level language which is combined with the 
Tspec library to create the test auditor module in  a system 
under  test. 

The Tspec language attempts to satisfy two communities of 
users. First, for users who will be encoding behavior 
specifications (like flight rules) that come from documents 

and conversations, the language should  be  simple and 
intuitive enough that it can be learned in about an hour and 
it should allow for incremental accumulation of and 
refinement of behavior specs. Second, for projects whose 
flight software executes formal plans, the language must be 
expressive enough to encode such plans so that plan 
execution can be verified automatically. 

Tspec is similar  in expressive power to linear temporal 
logic, but  its forms (invariants, state machines, episodes, 
and resource constraints) are believed to be more readily 
understandable and usable by spacecraft system engineers 
than are the temporal logic future operators (Next,  Always, 
Sometime,  Until). 

6. DISCUSSION OF SHINE 

SHINE is a reusable inference engine for the monitoring, 
analysis and diagnosis of real-time and non-real-time 
systems.  It is intended for those areas where inference 
speed, portability and reuse are of critical importance. 
When the knowledge base is cross-compiled, its resulting 
size is extremely small  and it can easily fit on targets with 
limited memory. 

Knowledge acquisition and implementation from experts is 
an inefficient and painful process for most automation 
implementation projects. This phase is often so difficult, 
that the success of the automation project as  a  whole is 
jeopardized, and then often the resulting system is too  slow 
or large to fit on the target system. SHINE  was designed to 
address such problems by providing an efficient, with 
respect to speed and  size, development and delivery 
environment. 

SHINE is not intended to be  an all-encompassing inference 
system. For those applications requiring advanced lnference 
strategies and representational capabilities, then another 
inference engine would be more appropriate. 

SHINE was designed to solve the usual kinds of monitoring 
and diagnostic problems found in  flight projects, factory 
automation or the general area of intelligent sensor 
monitoring. In those cases then it provides a very effective 
and efficient solution for the representation and execution of 
such problems. 

When a problem can be defined in terms of its attribute 
stimulus representation (discussed later), then SHINE 
provides a cost-effective approach to large-scale distributed 
software systems because of its data flow representation of 
rules. This reduces the complexity of the conflict-resolution 
match cycle by the transforming the knowledge base into  a 
data flow diagram. The data flow diagram is then translated 
to the destination target programming language for efficient 
representation and execution. 

The inference cycle never needs to pause for system-level 
activities such as garbage collection because the final 
representation preallocates all necessary storage for the 



inference process. This provides the knowledge base with a 
much more predictable execution profile that is often 
necessary in real-time applications. 

SHPJE has contributed to reduced operations cost, 
improved reliability and safety in eight NASA deep space 
missions that include Voyager, Galileo, Magellan, Cassini 
and Extreme Ultraviolet Explorer (EUVE). SHINE has been 
delivered to the NASA’s X-33 as a component of JPL’s 
Avionics  Flight Experiment (AFE) and will be flown in 
1999. 

7. THEORY OF OPERATION OF SHINE 

SHINE runs on multiple platforms and it has been ported to 
PCs,  MACs, SUNS, VAXes and the AFE’s flight 
computer. It is fully reusable and portable requiring less 
than three hours to port from one machine to another that 
supports  Common LISP. In addition, it contains cross 
compilers for translating a knowledge base to C and C++ 
without any reliance on the LISP environment. SHINE is 
originally based on the STAR*TOOL [8][9] and rewritten to 
be more efficient and sensitive to flight processor 
requirements and limitations. 

Rules are translated into stimulusiresponse objects that are 
then woven into a data flow model. The execution speed is 
improved from a sophisticated mathematical transformation 
based on graph-theoretic data flow analysis. The data flow 
representation is then transformed into threaded procedures 
for rapid execution. 

Figure 2 shows the steps involved in the SHINE compiling 
process. SHINE takes a knowledge base composed of 
attribute and variable descriptions, forward and backward 
chaining rules and function definitions described in a 
common representation language and generates code. 

One target that is always generated is the development 
environment and an optional target of one of the language 
target  generators, e.g., C,  C++, etc. 

SHINE includes a high-speed development environment that 
allows for the easy definition, editing, testing and delivery 
of knowledge-based systems. When speed is of critical 
importance, a cross compiler is seamlessly integrated in  the 
development environment to translate the knowledge base to 
C or  C++. Cross compilers for ADA and JAVA are 
planned for 1999. 

The development environment allows you to incrementally 
define your attribute and variable descriptions, forward  and 
backward chaining rules and function definitions and test 
your system.  This environment is written in LISP and 
executes very efficiently. 

any reliance or emulation of the original LISP 
representation. The resulting code is often small enough 
and efficient enough to  fit  on 8-bit microprocessors. 

Representing rules as stimulus/response objects not only 
enhances the forward chaining inference process. It doesn’t 
enable pattern-directed goal retrieval, i.e., backward 
chaining. Backward chaining inference is implemented by a 
transformational system that rewrites the backward chaining 
rules into their corresponding forward chaining counterparts. 

SHINE replaces traditional inefficient pattern-based rules 
with collections of stimulus/response attributes containing 
constraints of arbitrary complexity. 

SHINE contains a collection of compilers which translates 
the rules through a series of phases ultimately resulting in 
the target code,  e.g., machine code, C/C++, ADA (delivery 
in 1999) or JAVA (delivery in 1999). 

SHPJE replaces relations with objects called attributes. 
They are like variables in that they have values and they can 
be grouped to form relations. They are unlike variables in 
that rules that access their values get scheduled for running 
whenever the attribute is assigned a value. 

Attributes can have complex constraints associated with 
them including all the usual relational, logical, functional 
and mathematical operators. 

Forward and backward chaining rules are used to represent 
knowledge processes where the attributes are used to 
represent the information. The activation of a rule is based 
upon the attributes in a rule being  assigned a value and the 
constraints upon those attributes holding true at that instant 
in  time.  Any rules containing those constraint-satisfied 
values will  be scheduled for execution. This process is 
repeated until there are no more rules that can be executed 
and the Inference process ends. 

A rule may have computational and inference side-effects: 

Computational side effects are the typical 
computational algorithmic effects, e.g., 
assignments, calling functions  that change 
something. 

Inference side-effects are those which modify 
something in the knowledge base which causes a 
rule to be scheduled for evaluation, i.e., the 
assignment of a value to an attribute. 

If execution speed and  size are of critical importance, then 
the entire knowledge base can be cross-compiled into one of 
the optional targets. The result code is very small  without 



8. PREVIOUS SHINE DELIVERIES 9. CONCLUSIONS 

Just as artificial intelligence can play an important  role in 
the monitoring and diagnosis of space  planes, the tools  that 
are used to develop these systems  also  play an important 
role. This is especially true when issues of reliability, real- 
time performance, limited code and execution size, ease of 
use and maintainability are all factored in. 

The AI techniques and tools that were developed for the 
AFE are well suited for the monitoring and diagnosis of 
space planes and ground systems. Both SHINE  and Tspec 
run well in environments where system resources such as 
processor cycles and memory are at a premium. Both of 
these systems have been demonstrated in stand-alone 
advisory systems for human operators as  well as 
components of embedded systems. Both of the tools 
generate C++ code which allows them  to run efficiently in 
flight  systems  with real-time operating systems  such as 
VxWorks. 

Some of its successful areas of application include: 

1. Spacecraft Health Automatic Reasoning 
Pilot  (SHARP) for the diagnosis of 
telecommunication anomalies during the 
Neptune Voyager (VGR) Encounter. Several 
hours before the encounter it detected a 
failing transponder. This was detected long 
before it was possible by human operators 
which prevented possible down time during 
the most critical phase of the mission. 

2. Galileo (GLL) mission for diagnosing 
problems in the Power and  Pyro Subsystem 
(PPS). 

3. Magellan (MGN) mission for diagnosis of 
telecommunication anomalies in the 
TELECOM  subsystem. 

4. Engineering Analysis Subsystem 
Environment (EASE) which is an operations 
environment to operate a large number of 
spacecraft simultaneously, maintain high 
reliability levels and increase productivity 
through shared resources and automation. 

5. Extreme Ultraviolet Explorer (EUVE) 
mission for labor 3 to 1 shift reductions 
through the use of artificial intelligence. 

6. Being  flown on NASA's X-33 as part of 
JPL's Avionics Flight Experiment (AFE) 
for monitoring and diagnosis of 1553 
redundant bus failures and flight phase and 
mode identification. 

7. Fault Induced Document Offker (FIDO) for 
the E W E  mission: an automated system 
that assists in expert knowledge acquisition, 
access and  publishing capabilities for safely 
managing complex systems under staffing 
reductions and "lights out" operations. 

8. Being evaluated by Welch-Allyan for 
detecting and classifying colon cancer. 

9. Johnson and Johnson is evaluating SHINE 
for the control of a robotic system that 
performs endoscopic surgery. 

The benefits afforded by the application of these tools and 
techniques are significant. The architecture and autonomous 
fault diagnosis techniques pioneered in the SHAW[16][17] 
system have demonstrated important benefits for operator 
productivity and spacecraft safety and have the potential to 
reduce workforce requirements for future space operations. 

These techniques are have their limitations.  The diagnostic 
techniques developed for  the  SHARP  system are most 
appropriate for highly complex spacecraft or ground systems 
where faults are not immediately diagnosable from surface 
behavior. Our tests have shown that  some of the most 
common spacecraft anomaly situations are easily diagnosed 
by human experts and  only  simple, one-step inference is 
required. If this knowledge can be coded directly into a 
knowledge base, a simple heuristic associative diagnostic 
process may be preferable. It should be emphasized that 
building  and testing knowledge bases is time-consuming 
and is the major bottleneck for application development[2]. 

NO matter how good your tools are, knowledge acquisition 
remains a fundamental bottleneck for development of 
applications of these systems and for knowledge-base 
systems at large. 

10. Being used by mission operations to 
diagnose anomalies in the Deep Space 
Network (DSN) Antenna Array systems by 
providing a solution for optimal DSN 
decision-making by integrating analytical 
and artificial intelligence methods. 



10. FIGURES 

AFE FSW 

Figure 1: Block Diagram of Avionics Flight Experiment Software Data Flow 



Knowledge  bases  are specified in a high-level programming  language  composed  of common 
programming  language  constructs, e.g., Lf/Then/Else,  For/While/Until,  function calls. 

SHINE  rules  are  sent  to  the  SHINE  compiler which  links them with the  SHINE libraries 
B and  then  compiles  them  directly  into  native  target  code. 

The  machine  code is  linked  into  the  target program  space.  The  execution  of  the  rules is 
controlled  by  the  SHINE  Real-Time  Inference  Engine. 

Figure 2: Block Diagram of SHINE Internal Structure 
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